Merge pull request #52 from rsheldiii/new-key-structure

key.scad restructuring
This commit is contained in:
Bob 2020-09-29 12:05:54 -04:00 committed by GitHub
commit 8a7a302ac8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 907 additions and 600 deletions

16
CHANGELOG.md Normal file
View File

@ -0,0 +1,16 @@
CHANGELOG:
V2.0.0:
* added $fa values for minkowski and shape - so you can customize how much rounding there is
* rejiggered `key.scad` pipeline for more clarity and less shapes
* implemented "3d_surface" dish - still in beta
* super cool though, you can even change the distribution of points on the surface! just make sure you use monotonically increasing functions
* created "hull" folder to house different ways of creating the overall key shape
* promoted "feature" folder to first-class folder with keytext and switch clearance as new residents
* wrote this changelog!
* implemented `$inner_shape_type`, use "flat" for less geometry or "disable" to make a completely solid key easily. didn't help render rounded keys though
* side-printed keycaps are first class! you can use the `sideways()` modifier to set up sideways keycaps that have flat sides to print on.
* it's much easier to make quick artisans now that the inside of the keycap is differenced from any additive features placed on top
* `$linear_extrude_shape` and `$skin_extrude_shape` retired in favor of `$hull_shape_type`
* still todo: add a magic scaling variable so you can scale the whole world up, see if that fixes degeneracy
* still todo: rejigger supports
* still todo: rejigger inner shape. maybe just always make it flat

View File

@ -14,7 +14,7 @@ At the end of the day though, all the columnular sculpting is doing is adding ex
## skin mode ## skin mode
SA, HiPro and DSA keycaps take _forever_ to render. This is a multifaceted issue that I don't want to get into here, but suffice to say _one_ of the reasons it takes so long is how the keycap is constructed from multiple, smaller slices. OpenSCAD takes more time to render the more objects you have, regardless of how they interact. Enter `$skin_extrude_shape = true`. SA, HiPro and DSA keycaps take _forever_ to render. This is a multifaceted issue that I don't want to get into here, but suffice to say _one_ of the reasons it takes so long is how the keycap is constructed from multiple, smaller slices. OpenSCAD takes more time to render the more objects you have, regardless of how they interact. Enter `$hull_shape_type = "skin"`.
`skin()` is a list comprehension function available [here](https://github.com/openscad/list-comprehension-demos/blob/master/skin.scad). The gist of it is that instead of having x number of keycap slices unioned together, we give `skin()` a set of profiles and it makes a single object out of it for us. This reduces the number of objects per keycap, which makes it easier to render them. `skin()` is a list comprehension function available [here](https://github.com/openscad/list-comprehension-demos/blob/master/skin.scad). The gist of it is that instead of having x number of keycap slices unioned together, we give `skin()` a set of profiles and it makes a single object out of it for us. This reduces the number of objects per keycap, which makes it easier to render them.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,14 @@
include <../libraries/3d_surface.scad>
module 3d_surface_dish(width, height, depth, inverted) {
echo(inverted ? "inverted" : "not inverted");
// scale_factor is dead reckoning
// it doesn't have to be dead reckoning for anything but sculpted sides
// we know the angle of the sides from the width difference, height difference,
// skew and tilt of the top. it's a pain to calculate though
scale_factor = 1.1;
// the edges on this behave differently than with the previous dish implementations
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,180]) polar_3d_surface(bottom=-10);
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
}

View File

@ -2,7 +2,7 @@ module keytext(text, position, font_size, depth) {
woffset = (top_total_key_width()/3.5) * position[0]; woffset = (top_total_key_width()/3.5) * position[0];
hoffset = (top_total_key_height()/3.5) * -position[1]; hoffset = (top_total_key_height()/3.5) * -position[1];
translate([woffset, hoffset, -depth]){ translate([woffset, hoffset, -depth]){
color($tertiary_color) linear_extrude(height=$dish_depth){ color($tertiary_color) linear_extrude(height=$dish_depth + depth){
text(text=text, font=$font, size=font_size, halign="center", valign="center"); text(text=text, font=$font, size=font_size, halign="center", valign="center");
} }
} }

View File

@ -40,3 +40,27 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// of the keycap a flat plane. 1 = front, -1 = back // of the keycap a flat plane. 1 = front, -1 = back
// I derived this through a bunch of trig reductions I don't really understand. // I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth); function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// (statically) random!
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */

19
src/hulls.scad Normal file
View File

@ -0,0 +1,19 @@
include <hulls/skin.scad>
include <hulls/linear_extrude.scad>
include <hulls/hull.scad>
// basic key shape, no dish, no inside
// which is only used for dishing to cut the dish off correctly
// $height_difference used for keytop thickness
// extra_slices is a hack to make inverted dishes still work
module shape_hull(thickness_difference, depth_difference, extra_slices = 0){
render() {
if ($hull_shape_type == "skin") {
skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else if ($hull_shape_type == "linear extrude") {
linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else {
hull_shape_hull(thickness_difference, depth_difference, extra_slices);
}
}
}

33
src/hulls/hull.scad Normal file
View File

@ -0,0 +1,33 @@
module hull_shape_hull(thickness_difference, depth_difference, extra_slices = 0) {
for (index = [0:$height_slices - 1 + extra_slices]) {
hull() {
shape_slice(index / $height_slices, thickness_difference, depth_difference);
shape_slice((index + 1) / $height_slices, thickness_difference, depth_difference);
}
}
}
module shape_slice(progress, thickness_difference, depth_difference) {
skew_this_slice = $top_skew * progress;
x_skew_this_slice = $top_skew_x * progress;
depth_this_slice = ($total_depth - depth_difference) * progress;
tilt_this_slice = -$top_tilt / $key_height * progress;
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0;
translate([x_skew_this_slice, skew_this_slice, depth_this_slice]) {
rotate([tilt_this_slice,y_tilt_this_slice,0]){
linear_extrude(height = SMALLEST_POSSIBLE, scale = 1){
key_shape(
[
total_key_width(thickness_difference),
total_key_height(thickness_difference)
],
[$width_difference, $height_difference],
progress
);
}
}
}
}

View File

@ -0,0 +1,18 @@
// corollary is hull_shape_hull
// extra_slices unused, only to match argument signatures
module linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0){
height = $total_depth - depth_difference;
width_scale = top_total_key_width() / total_key_width();
height_scale = top_total_key_height() / total_key_height();
translate([0,$linear_extrude_height_adjustment,0]){
linear_extrude(height = height, scale = [width_scale, height_scale]) {
translate([0,-$linear_extrude_height_adjustment,0]){
key_shape(
[total_key_width(), total_key_height()],
[thickness_difference, thickness_difference]
);
}
}
}
}

34
src/hulls/skin.scad Normal file
View File

@ -0,0 +1,34 @@
// use skin() instead of successive hulls. much more correct, and looks faster
// too, in most cases. successive hull relies on overlapping faces which are
// not good. But, skin works on vertex sets instead of shapes, which makes it
// a lot more difficult to use
module skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0 ) {
skin([
for (index = [0:$height_slices + extra_slices])
let(
progress = (index / $height_slices),
skew_this_slice = $top_skew * progress,
x_skew_this_slice = $top_skew_x * progress,
depth_this_slice = ($total_depth - depth_difference) * progress,
tilt_this_slice = -$top_tilt / $key_height * progress,
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0
)
skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice)
]);
}
function skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice) =
transform(
translation([x_skew_this_slice,skew_this_slice,depth_this_slice]),
transform(
rotation([tilt_this_slice,y_tilt_this_slice,0]),
skin_key_shape([
total_key_width(0),
total_key_height(0),
],
[$width_difference, $height_difference],
progress,
thickness_difference
)
)
);

View File

@ -6,6 +6,7 @@ include <stem_supports.scad>
include <dishes.scad> include <dishes.scad>
include <supports.scad> include <supports.scad>
include <features.scad> include <features.scad>
include <hulls.scad>
include <libraries/geodesic_sphere.scad> include <libraries/geodesic_sphere.scad>
@ -15,209 +16,40 @@ use <libraries/scad-utils/lists.scad>
use <libraries/scad-utils/shapes.scad> use <libraries/scad-utils/shapes.scad>
use <libraries/skin.scad> use <libraries/skin.scad>
/* [Hidden] */ /* [Hidden] */
SMALLEST_POSSIBLE = 1/128; SMALLEST_POSSIBLE = 1/128;
$fs = .1; // basically disable $fs - though it might be useful for these CGAL problems
$fs = .01;
$unit = 19.05; $unit = 19.05;
// key shape including dish. used as the ouside and inside shape in hollow_key(). allows for itself to be shrunk in depth and width / height // key shape including dish. used as the ouside and inside shape in hollow_key(). allows for itself to be shrunk in depth and width / height
module shape(thickness_difference, depth_difference=0){ module shape(thickness_difference, depth_difference=0){
dished(depth_difference, $inverted_dish) { dished(depth_difference, $inverted_dish) {
color($primary_color) shape_hull(thickness_difference, depth_difference, $inverted_dish ? 2 : 0); color($primary_color) shape_hull(thickness_difference, depth_difference, $inverted_dish ? 200 : 0);
} }
} }
// shape of the key but with soft, rounded edges. no longer includes dish // Not currently used due to CGAL errors. Rounds the shape via minkowski
// randomly doesnt work sometimes
// the dish doesn't _quite_ reach as far as it should
module rounded_shape() { module rounded_shape() {
dished(-$minkowski_radius, $inverted_dish) {
color($primary_color) minkowski(){
// half minkowski in the z direction
color($primary_color) shape_hull($minkowski_radius * 2, $minkowski_radius/2, $inverted_dish ? 2 : 0);
/* cube($minkowski_radius); */
sphere(r=$minkowski_radius, $fn=$minkowski_facets);
}
}
/* %envelope(); */
}
// this function is more correct, but takes _forever_
// the main difference is minkowski happens after dishing, meaning the dish is
// also minkowski'd
/* module rounded_shape() {
color($primary_color) minkowski(){ color($primary_color) minkowski(){
// half minkowski in the z direction // half minkowski in the z direction
shape($minkowski_radius * 2, $minkowski_radius/2); shape($minkowski_radius * 2, $minkowski_radius/2);
difference(){ minkowski_object();
sphere(r=$minkowski_radius, $fn=20); }
translate([0,0,-$minkowski_radius]){ }
cube($minkowski_radius * 2, center=true);
} // minkowski places this object at every vertex of the other object then mashes
// it all together
module minkowski_object() {
// alternative minkowski shape that needs the bottom of the keycap to be trimmed
/* sphere(1); */
difference(){
sphere(r=$minkowski_radius, $fa=360/$minkowski_facets);
translate([0,0,-$minkowski_radius]){
cube($minkowski_radius * 2, center=true);
} }
} }
} */
// basic key shape, no dish, no inside
// which is only used for dishing to cut the dish off correctly
// $height_difference used for keytop thickness
// extra_slices is a hack to make inverted dishes still work
module shape_hull(thickness_difference, depth_difference, extra_slices = 0){
render() {
if ($skin_extrude_shape) {
skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else if ($linear_extrude_shape) {
linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else {
hull_shape_hull(thickness_difference, depth_difference, extra_slices);
}
}
}
// use skin() instead of successive hulls. much more correct, and looks faster
// too, in most cases. successive hull relies on overlapping faces which are
// not good. But, skin works on vertex sets instead of shapes, which makes it
// a lot more difficult to use
module skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0 ) {
skin([
for (index = [0:$height_slices + extra_slices])
let(
progress = (index / $height_slices),
skew_this_slice = $top_skew * progress,
x_skew_this_slice = $top_skew_x * progress,
depth_this_slice = ($total_depth - depth_difference) * progress,
tilt_this_slice = -$top_tilt / $key_height * progress,
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0
)
skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice)
]);
}
function skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice) =
transform(
translation([x_skew_this_slice,skew_this_slice,depth_this_slice]),
transform(
rotation([tilt_this_slice,y_tilt_this_slice,0]),
skin_key_shape([
total_key_width(0),
total_key_height(0),
],
[$width_difference, $height_difference],
progress,
thickness_difference
)
)
);
// corollary is hull_shape_hull
// extra_slices unused, only to match argument signatures
module linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0){
height = $total_depth - depth_difference;
width_scale = top_total_key_width() / total_key_width();
height_scale = top_total_key_height() / total_key_height();
translate([0,$linear_extrude_height_adjustment,0]){
linear_extrude(height = height, scale = [width_scale, height_scale]) {
translate([0,-$linear_extrude_height_adjustment,0]){
key_shape(
[total_key_width(thickness_difference), total_key_height(thickness_difference)],
[$width_difference, $height_difference]
);
}
}
}
}
module hull_shape_hull(thickness_difference, depth_difference, extra_slices = 0) {
for (index = [0:$height_slices - 1 + extra_slices]) {
hull() {
shape_slice(index / $height_slices, thickness_difference, depth_difference);
shape_slice((index + 1) / $height_slices, thickness_difference, depth_difference);
}
}
}
module shape_slice(progress, thickness_difference, depth_difference) {
skew_this_slice = $top_skew * progress;
x_skew_this_slice = $top_skew_x * progress;
depth_this_slice = ($total_depth - depth_difference) * progress;
tilt_this_slice = -$top_tilt / $key_height * progress;
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0;
translate([x_skew_this_slice, skew_this_slice, depth_this_slice]) {
rotate([tilt_this_slice,y_tilt_this_slice,0]){
linear_extrude(height = SMALLEST_POSSIBLE){
key_shape(
[
total_key_width(thickness_difference),
total_key_height(thickness_difference)
],
[$width_difference, $height_difference],
progress
);
}
}
}
}
// for when you want something to only exist inside the keycap.
// used for the support structure
module inside() {
intersection() {
shape($wall_thickness, $keytop_thickness);
children();
}
}
// for when you want something to only exist outside the keycap
module outside() {
difference() {
children();
shape($wall_thickness, $keytop_thickness);
}
}
// put something at the top of the key, with no adjustments for dishing
module top_placement(depth_difference=0) {
top_tilt_by_height = -$top_tilt / $key_height;
top_tilt_y_by_length = $double_sculpted ? (-$top_tilt_y / $key_length) : 0;
minkowski_height = $rounded_key ? $minkowski_radius : 0;
translate([$top_skew_x + $dish_skew_x, $top_skew + $dish_skew_y, $total_depth - depth_difference + minkowski_height/2]){
rotate([top_tilt_by_height, top_tilt_y_by_length,0]){
children();
}
}
}
module front_placement() {
// all this math is to take top skew and tilt into account
// we need to find the new effective height and depth of the top, front lip
// of the keycap to find the angle so we can rotate things correctly into place
total_depth_difference = sin(-$top_tilt) * (top_total_key_height()/2);
total_height_difference = $top_skew + (1 - cos(-$top_tilt)) * (top_total_key_height()/2);
angle = atan2(($total_depth - total_depth_difference), ($height_difference/2 + total_height_difference));
hypotenuse = ($total_depth -total_depth_difference) / sin(angle);
translate([0,-total_key_height()/2,0]) {
rotate([-(90-angle), 0, 0]) {
translate([0,0,hypotenuse/2]){
children();
}
}
}
}
// just to DRY up the code
module _dish() {
color($secondary_color) dish(top_total_key_width() + $dish_overdraw_width, top_total_key_height() + $dish_overdraw_height, $dish_depth, $inverted_dish);
} }
module envelope(depth_difference=0) { module envelope(depth_difference=0) {
@ -230,18 +62,6 @@ module envelope(depth_difference=0) {
} }
} }
// I think this is unused
module dished_for_show() {
difference(){
union() {
envelope();
if ($inverted_dish) top_placement(0) _dish();
}
if (!$inverted_dish) top_placement(0) _dish();
}
}
// for when you want to take the dish out of things // for when you want to take the dish out of things
// used for adding the dish to the key shape and making sure stems don't stick out the top // used for adding the dish to the key shape and making sure stems don't stick out the top
// creates a bounding box 1.5 times larger in width and height than the keycap. // creates a bounding box 1.5 times larger in width and height than the keycap.
@ -250,27 +70,21 @@ module dished(depth_difference = 0, inverted = false) {
children(); children();
difference(){ difference(){
union() { union() {
// envelope is needed to "fill in" the rest of the keycap
envelope(depth_difference); envelope(depth_difference);
if (inverted) top_placement(depth_difference) _dish(); if (inverted) top_placement(depth_difference) _dish(inverted);
} }
if (!inverted) top_placement(depth_difference) _dish(); if (!inverted) top_placement(depth_difference) _dish(inverted);
} }
} }
} }
// puts it's children at the center of the dishing on the key, including dish height // just to DRY up the code
// more user-friendly than top_placement module _dish(inverted=$inverted_dish) {
module top_of_key(){ color($secondary_color) dish(top_total_key_width() + $dish_overdraw_width, top_total_key_height() + $dish_overdraw_height, $dish_depth, inverted);
// if there is a dish, we need to account for how much it digs into the top
dish_depth = ($dish_type == "disable") ? 0 : $dish_depth;
// if the dish is inverted, we need to account for that too. in this case we do half, otherwise the children would be floating on top of the dish
corrected_dish_depth = ($inverted_dish) ? -dish_depth / 2 : dish_depth;
top_placement(corrected_dish_depth) {
children();
}
} }
// puts its children at each keystem position provided
module keystem_positions(positions) { module keystem_positions(positions) {
for (connector_pos = positions) { for (connector_pos = positions) {
translate(connector_pos) { translate(connector_pos) {
@ -296,77 +110,127 @@ module stems_for(positions, stem_type) {
} }
} }
// legends / artisan support // put something at the top of the key, with no adjustments for dishing
module artisan(depth) { module top_placement(depth_difference=0) {
top_tilt_by_height = -$top_tilt / $key_height;
top_tilt_y_by_length = $double_sculpted ? (-$top_tilt_y / $key_length) : 0;
minkowski_height = $rounded_key ? $minkowski_radius : 0;
translate([$top_skew_x + $dish_skew_x, $top_skew + $dish_skew_y, $total_depth - depth_difference + minkowski_height/2]){
rotate([top_tilt_by_height, top_tilt_y_by_length,0]){
children();
}
}
}
// puts its children at the center of the dishing on the key, including dish height
// more user-friendly than top_placement
module top_of_key(){
// if there is a dish, we need to account for how much it digs into the top
dish_depth = ($dish_type == "disable") ? 0 : $dish_depth;
// if the dish is inverted, we need to account for that too. in this case we do half, otherwise the children would be floating on top of the dish
corrected_dish_depth = ($inverted_dish) ? -dish_depth / 2 : dish_depth;
top_placement(corrected_dish_depth) {
children();
}
}
module front_of_key() {
// all this math is to take top skew and tilt into account
// we need to find the new effective height and depth of the top, front lip
// of the keycap to find the angle so we can rotate things correctly into place
total_depth_difference = sin(-$top_tilt) * (top_total_key_height()/2);
total_height_difference = $top_skew + (1 - cos(-$top_tilt)) * (top_total_key_height()/2);
angle = atan2(($total_depth - total_depth_difference), ($height_difference/2 + total_height_difference));
hypotenuse = ($total_depth -total_depth_difference) / sin(angle);
translate([0,-total_key_height()/2,0]) {
rotate([-(90-angle), 0, 0]) {
translate([0,0,hypotenuse/2]){
children();
}
}
}
}
module outer_shape() {
shape(0, 0);
}
module inner_shape(extra_wall_thickness = 0, extra_keytop_thickness = 0) {
if ($inner_shape_type == "flat") {
/* $key_shape_type="square"; */
$height_slices = 1;
color($primary_color) shape_hull($wall_thickness + extra_wall_thickness, $keytop_thickness + extra_keytop_thickness, 0);
} else {
shape($wall_thickness + extra_wall_thickness, $keytop_thickness + extra_keytop_thickness);
}
}
// additive objects at the top of the key
module additive_features(inset) {
top_of_key() { top_of_key() {
// artisan objects / outset shape legends if($key_bump) keybump($key_bump_depth, $key_bump_edge);
color($secondary_color) children(); if(!inset && $children > 0) color($secondary_color) children();
}
if($outset_legends) legends(0);
// render the clearance check if it's enabled, but don't have it intersect with anything
if ($clearance_check) %clearance_check();
}
// subtractive objects at the top of the key
module subtractive_features(inset) {
top_of_key() {
if (inset && $children > 0) color($secondary_color) children();
}
if(!$outset_legends) legends($inset_legend_depth);
// subtract the clearance check if it's enabled, letting the user see the
// parts of the keycap that will hit the cherry switch
if ($clearance_check) %clearance_check();
}
// features inside the key itself (stem, supports, etc)
module inside_features() {
translate([0, 0, $stem_inset]) {
if ($stabilizer_type != "disable") stems_for($stabilizers, $stabilizer_type);
if ($stem_type != "disable") stems_for($stem_positions, $stem_type);
if ($support_type != "disable") support_for($stem_positions, $stem_type);
} }
} }
// key with hollowed inside but no stem // helpers for doubleshot keycaps for now
module hollow_key() { module inner_total_shape() {
difference(){ difference() {
if ($rounded_key) { inner_shape();
rounded_shape(); inside_features();
} else {
shape(0, 0);
}
// translation purely for aesthetic purposes, to get rid of that awful lattice
translate([0,0,-SMALLEST_POSSIBLE]) {
shape($wall_thickness, $keytop_thickness);
}
} }
} }
module outer_total_shape(inset=false) {
outer_shape();
additive_features(inset) {
children();
};
}
// The final, penultimate key generation function. // The final, penultimate key generation function.
// takes all the bits and glues them together. requires configuration with special variables. // takes all the bits and glues them together. requires configuration with special variables.
module key(inset = false) { module key(inset=false) {
difference() { difference(){
union(){ outer_total_shape(inset);
// the shape of the key, inside and out
hollow_key();
if($key_bump) top_of_key() keybump($key_bump_depth, $key_bump_edge);
// additive objects at the top of the key
// outside() makes them stay out of the inside. it's a bad name
if(!inset && $children > 0) outside() artisan(0) children();
if($outset_legends) legends(0);
// render the clearance check if it's enabled, but don't have it intersect with anything
if ($clearance_check) %clearance_check();
}
// subtractive objects at the top of the key if ($inner_shape_type != "disable") {
// no outside() - I can't think of a use for it. will save render time translate([0,0,-SMALLEST_POSSIBLE]) {
if (inset && $children > 0) artisan($inset_legend_depth) children(); inner_total_shape();
if(!$outset_legends) legends($inset_legend_depth);
// subtract the clearance check if it's enabled, letting the user see the
// parts of the keycap that will hit the cherry switch
if ($clearance_check) %clearance_check();
}
// both stem and support are optional
if ($stem_type != "disable" || ($stabilizers != [] && $stabilizer_type != "disable")) {
dished($keytop_thickness, $inverted_dish) {
translate([0, 0, $stem_inset]) {
if ($stabilizer_type != "disable") stems_for($stabilizers, $stabilizer_type);
if ($stem_type != "disable") stems_for($stem_positions, $stem_type);
} }
} }
}
if ($support_type != "disable"){ subtractive_features(inset) {
inside() { children();
translate([0, 0, $stem_inset]) { };
if ($stabilizer_type != "disable") support_for($stabilizers, $stabilizer_type);
// always render stem support even if there isn't a stem.
// rendering flat support w/no stem is much more common than a hollow keycap
// so if you want a hollow keycap you'll have to turn support off entirely
support_for($stem_positions, $stem_type);
}
}
} }
} }

View File

@ -11,7 +11,7 @@ module grid_row(row=3, column = 0) {
$dish_skew_x = 0; $dish_skew_x = 0;
$dish_skew_y = 0; $dish_skew_y = 0;
$linear_extrude_shape = true; $hull_shape_type = "linear extrude";
$dish_overdraw_width = -8; $dish_overdraw_width = -8;

View File

@ -46,7 +46,7 @@ module iso_enter() {
$top_tilt = 0; $top_tilt = 0;
$stem_support_type = "disable"; $stem_support_type = "disable";
$key_shape_type = "iso_enter"; $key_shape_type = "iso_enter";
/* $linear_extrude_shape = true; */ /* $hull_shape_type = "linear extrude"; */
$linear_extrude_height_adjustment = 19.05 * 0.5; $linear_extrude_height_adjustment = 19.05 * 0.5;
// this equals (unit_length(1.5) - unit_length(1.25)) / 2 // this equals (unit_length(1.5) - unit_length(1.25)) / 2
$dish_overdraw_width = 2.38125; $dish_overdraw_width = 2.38125;

View File

@ -1,7 +1,7 @@
include <../layout.scad> include <../layout.scad>
// negative numbers are used for spacing // negative numbers are used for spacing
lets_split_mapping = [ lets_split_layout = [
[1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1],
@ -9,5 +9,5 @@ lets_split_mapping = [
]; ];
module lets_split_default(profile) { module lets_split_default(profile) {
layout(lets_split_mapping, profile, row_sculpting_offset=1) children(); layout(lets_split_layout, profile, row_sculpting_offset=1) children();
} }

View File

@ -118,12 +118,10 @@ $font="DejaVu Sans Mono:style=Book";
// Whether or not to render fake keyswitches to check clearances // Whether or not to render fake keyswitches to check clearances
$clearance_check = false; $clearance_check = false;
// Should be faster, also required for concave shapes // Should be faster, also required for concave shapes
// Use linear_extrude instead of hull slices to make the shape of the key
$linear_extrude_shape = false;
// warns in trajectory.scad but it looks benign // what kind of extrusion we use to create the keycap. "hull" is standard, "linear extrude" is legacy, "skin" is new and not well supported.
// brand new, more correct, hopefully faster, lots more work $hull_shape_type = "hull"; // ["hull", "linear extrude", "skin"]
$skin_extrude_shape = false;
// This doesn't work very well, but you can try // This doesn't work very well, but you can try
$rounded_key = false; $rounded_key = false;
//minkowski radius. radius of sphere used in minkowski sum for minkowski_key function. 1.75 for G20 //minkowski radius. radius of sphere used in minkowski sum for minkowski_key function. 1.75 for G20
@ -187,3 +185,12 @@ $warning_color = [1,0,0, 0.15];
// how many facets circles will have when used in these features // how many facets circles will have when used in these features
$minkowski_facets = 30; $minkowski_facets = 30;
$shape_facets =30; $shape_facets =30;
// 3d surface settings
// unused for now
$3d_surface_size = 100;
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
$3d_surface_step = 5;
// "flat" / "dished" / "disable"
$inner_shape_type = "flat";

View File

@ -2,6 +2,7 @@
// NOT 3D // NOT 3D
function unit_length(length) = unit * (length - 1) + 18.16; function unit_length(length) = unit * (length - 1) + 18.16;
module ISO_enter_shape(size, delta, progress){ module ISO_enter_shape(size, delta, progress){
width = size[0]; width = size[0];
height = size[1]; height = size[1];
@ -16,19 +17,21 @@ module ISO_enter_shape(size, delta, progress){
width_ratio = unit_length(1.25) / unit_length(1.5); width_ratio = unit_length(1.25) / unit_length(1.5);
height_ratio = unit_length(1) / unit_length(2); height_ratio = unit_length(1) / unit_length(2);
delta = delta / 2;
pointArray = [ pointArray = [
[ 0, 0], // top right [ 0-delta.x, 0-delta.y], // top right
[ 0, -height], // bottom right [ 0-delta.x, -height+delta.y], // bottom right
[-width * width_ratio, -height], // bottom left [-width * width_ratio+delta.x, -height+delta.y], // bottom left
[-width * width_ratio,-height * height_ratio], // inner middle point [-width * width_ratio + delta.x,-height * height_ratio+delta.y], // inner middle point
[ -width,-height * height_ratio], // outer middle point [ -width + delta.x,-height * height_ratio + delta.y], // outer middle point
[ -width, 0] // top left [ -width + delta.x, 0-delta.y] // top left
]; ];
minkowski(){ minkowski(){
circle(r=corner_size); circle(r=$corner_radius);
// gives us rounded inner corner // gives us rounded inner corner
offset(r=-corner_size*2) { offset(r=-$corner_radius*2) {
translate([(width * width_ratio)/2, height/2]) polygon(points=pointArray); translate([(width * width_ratio)/2, height/2]) polygon(points=pointArray);
} }
} }

View File

@ -9,4 +9,4 @@ module rounded_square_shape(size, delta, progress, center = true) {
// for skin // for skin
function skin_rounded_square(size, delta, progress, thickness_difference) = function skin_rounded_square(size, delta, progress, thickness_difference) =
rounded_rectangle_profile(size - (delta * progress), fn=$shape_facets, r=$corner_radius); rounded_rectangle_profile(size - (delta * progress) - [thickness_difference, thickness_difference], fn=$shape_facets, r=$corner_radius);