module cylindrical_dish(top_total_key_width, dish_depth, inverted_dish, top_tilt){ /* we do some funky math here * basically you want to have the dish "dig in" to the keycap x millimeters * in order to do that you have to solve a small (2d) system of equations * where the chord of the spherical cross section of the dish is * the width of the keycap. */ // the distance you have to move the dish so it digs in dish_depth millimeters chord_length = (pow(top_total_key_width, 2) - 4 * pow(dish_depth, 2)) / (8 * dish_depth); //the radius of the dish rad = (pow(top_total_key_width, 2) + 4 * pow(dish_depth, 2)) / (8 * dish_depth); direction = inverted_dish ? -1 : 1; rotate([90-top_tilt,0,0]){ translate([0,chord_length * direction,0]){ cylinder(h=100,r=rad, $fn=1024, center=true); } } } module spherical_dish(top_total_key_width, dish_depth, inverted_dish, top_tilt){ //same thing as the cylindrical dish here, but we need the corners to just touch - so we have to find the hypotenuse of the top chord = pow((pow(top_total_key_width,2) + pow(top_total_key_height(), 2)),0.5); //getting diagonal of the top // the distance you have to move the dish up so it digs in dish_depth millimeters chord_length = (pow(chord, 2) - 4 * pow(dish_depth, 2)) / (8 * dish_depth); //the radius of the dish rad = (pow(chord, 2) + 4 * pow(dish_depth, 2)) / (8 * dish_depth); direction = inverted_dish ? -1 : 1; rotate([-top_tilt,0,0]){ translate([0,0,chord_length * direction]){ //NOTE: if your dish is long at all you might need to increase $fn sphere(r=rad, $fn=512); } } } module sideways_cylindrical_dish(top_total_key_width, dish_depth, inverted_dish, top_tilt){ chord_length = (pow(top_total_key_height(), 2) - 4 * pow(dish_depth, 2)) / (8 * dish_depth); rad = (pow(top_total_key_height(), 2) + 4 * pow(dish_depth, 2)) / (8 * dish_depth); direction = inverted_dish ? -1 : 1; rotate([90,top_tilt,90]){ translate([0,chord_length * direction,0]){ cylinder(h=total_key_width + 20,r=rad, $fn=1024, center=true); // +20 just cuz } } }