// from https://www.thingiverse.com/thing:1484333 // public domain license // same syntax and semantics as built-in sphere, so should be a drop-in replacement // it's a bit slow for large numbers of facets module geodesic_sphere(r=-1, d=-1) { // if neither parameter specified, radius is taken to be 1 rad = r > 0 ? r : d > 0 ? d/2 : 1; pentside_pr = 2*sin(36); // side length compared to radius of a pentagon pentheight_pr = sqrt(pentside_pr*pentside_pr - 1); // from center of sphere, icosahedron edge subtends this angle edge_subtend = 2*atan(pentheight_pr); // vertical rotation by 72 degrees c72 = cos(72); s72 = sin(72); function zrot(pt) = [ c72*pt[0]-s72*pt[1], s72*pt[0]+c72*pt[1], pt[2] ]; // rotation from north to vertex along positive x ces = cos(edge_subtend); ses = sin(edge_subtend); function yrot(pt) = [ ces*pt[0] + ses*pt[2], pt[1], ces*pt[2]-ses*pt[0] ]; // 12 icosahedron vertices generated from north, south, yrot and zrot ic1 = [ 0, 0, 1 ]; // north ic2 = yrot(ic1); // north and +x ic3 = zrot(ic2); // north and +x and +y ic4 = zrot(ic3); // north and -x and +y ic5 = zrot(ic4); // north and -x and -y ic6 = zrot(ic5); // north and +x and -y ic12 = [ 0, 0, -1]; // south ic10 = yrot(ic12); // south and -x ic11 = zrot(ic10); // south and -x and -y ic7 = zrot(ic11); // south and +x and -y ic8 = zrot(ic7); // south and +x and +y ic9 = zrot(ic8); // south and -x and +y // start with icosahedron, icos[0] is vertices and icos[1] is faces icos = [ [ic1, ic2, ic3, ic4, ic5, ic6, ic7, ic8, ic9, ic10, ic11, ic12 ], [ [0, 2, 1], [0, 3, 2], [0, 4, 3], [0, 5, 4], [0, 1, 5], [1, 2, 7], [2, 3, 8], [3, 4, 9], [4, 5, 10], [5, 1, 6], [7, 6, 1], [8, 7, 2], [9, 8, 3], [10, 9, 4], [6, 10, 5], [6, 7, 11], [7, 8, 11], [8, 9, 11], [9, 10, 11], [10, 6, 11]]]; // now for polyhedron subdivision functions // given two 3D points on the unit sphere, find the half-way point on the great circle // (euclidean midpoint renormalized to be 1 unit away from origin) function midpt(p1, p2) = let (midx = (p1[0] + p2[0])/2, midy = (p1[1] + p2[1])/2, midz = (p1[2] + p2[2])/2) let (midlen = sqrt(midx*midx + midy*midy + midz*midz)) [ midx/midlen, midy/midlen, midz/midlen ]; // given a "struct" where pf[0] is vertices and pf[1] is faces, subdivide all faces into // 4 faces by dividing each edge in half along a great circle (midpt function) // and returns a struct of the same format, i.e. pf[0] is a (larger) list of vertices and // pf[1] is a larger list of faces. function subdivpf(pf) = let (p=pf[0], faces=pf[1]) [ // for each face, barf out six points [ for (f=faces) let (p0 = p[f[0]], p1 = p[f[1]], p2=p[f[2]]) // "identity" for-loop saves having to flatten for (outp=[ p0, p1, p2, midpt(p0, p1), midpt(p1, p2), midpt(p0, p2) ]) outp ], // now, again for each face, spit out four faces that connect those six points [ for (i=[0:len(faces)-1]) let (base = 6*i) // points generated in multiples of 6 for (outf = [[ base, base+3, base+5], [base+3, base+1, base+4], [base+5, base+4, base+2], [base+3, base+4, base+5]]) outf // "identity" for-loop saves having to flatten ] ]; // recursive wrapper for subdivpf that subdivides "levels" times function multi_subdiv_pf(pf, levels) = levels == 0 ? pf : multi_subdiv_pf(subdivpf(pf), levels-1); // subdivision level based on $fa: // level 0 has edge angle of edge_subtend so subdivision factor should be edge_subtend/$fa // must round up to next power of 2. // Take log base 2 of angle ratio and round up to next integer ang_levels = ceil(log(edge_subtend/$fa)/log(2)); // subdivision level based on $fs: // icosahedron edge length is rad*2*tan(edge_subtend/2) // actually a chord and not circumference but let's say it's close enough // subdivision factor should be rad*2*tan(edge_subtend/2)/$fs side_levels = ceil(log(rad*2*tan(edge_subtend/2)/$fs)/log(2)); // subdivision level based on $fn: (fragments around circumference, not total facets) // icosahedron circumference around equator is about 5 (level 1 is exactly 10) // ratio of requested to equatorial segments is $fn/5 // level of subdivison is log base 2 of $fn/5 // round up to the next whole level so we get at least $fn facet_levels = ceil(log($fn/5)/log(2)); // $fn takes precedence, otherwise facet_levels is NaN (-inf) but it's ok // because it falls back to $fa or $fs, whichever translates to fewer levels levels = $fn ? facet_levels : min(ang_levels, side_levels); // subdivide icosahedron by these levels subdiv_icos = multi_subdiv_pf(icos, levels); scale(rad) polyhedron(points=subdiv_icos[0], faces=subdiv_icos[1]); }