Compare commits

...

1 Commits

Author SHA1 Message Date
Bob 113fb67b29 extract features to folder
I'm calling "key features" anything that goes on the key that isn't artisanal, so legends, the clearance check, the bump, etc.
2020-05-12 10:42:37 -04:00
13 changed files with 815 additions and 386 deletions

13
CHANGELOG.md Normal file
View File

@ -0,0 +1,13 @@
CHANGELOG:
V2.0.0:
* added $fa values for minkowski and shape - so you can customize how much rounding there is
* rejiggered `key.scad` pipeline for more clarity and less shapes
* implemented "3d_surface" dish - still in beta
* super cool though, you can even change the distribution of points on the surface! just make sure you use monotonically increasing functions
* created "hull" folder to house different ways of creating the overall key shape
* promoted "feature" folder to first-class folder with keytext and switch clearance as new residents
* wrote this changelog!
* `flat_keytop_bottom` for less geometry. didn't help render rounded keys though
* still todo: add a magic scaling variable so you can scale the whole world up, see if that fixes degeneracy
* side-printed keycaps are first class! you can use the `sideways()` modifier to set up sideways keycaps that have flat sides to print on.
* it's much easier to make quick artisans now that the inside of the keycap is differenced from any additive features placed on top

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,9 @@
module 3d_surface_dish(width, height, depth, inverted) {
echo(inverted ? "inverted" : "not inverted");
// scale_factor is dead reckoning
scale_factor = 1.2;
// the edges on this behave differently than with the previous dish implementations
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,0]) polar_3d_surface(bottom=-10);
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
}

5
src/features.scad Normal file
View File

@ -0,0 +1,5 @@
// features are any premade self-contained objects that go on top or inside
include <features/key_bump.scad>
include <features/clearance_check.scad>
include <features/legends.scad>

View File

@ -0,0 +1,24 @@
// a fake cherry keyswitch, abstracted out to maybe replace with a better one later
module cherry_keyswitch() {
union() {
hull() {
cube([15.6, 15.6, 0.01], center=true);
translate([0,1,5 - 0.01]) cube([10.5,9.5, 0.01], center=true);
}
hull() {
cube([15.6, 15.6, 0.01], center=true);
translate([0,0,-5.5]) cube([13.5,13.5,0.01], center=true);
}
}
}
//approximate (fully depressed) cherry key to check clearances
module clearance_check() {
if($stem_type == "cherry" || $stem_type == "cherry_rounded"){
color($warning_color){
translate([0,0,3.6 + $stem_inset - 5]) {
cherry_keyswitch();
}
}
}
}

26
src/features/legends.scad Normal file
View File

@ -0,0 +1,26 @@
module keytext(text, position, font_size, depth) {
woffset = (top_total_key_width()/3.5) * position[0];
hoffset = (top_total_key_height()/3.5) * -position[1];
translate([woffset, hoffset, -depth]){
color($tertiary_color) linear_extrude(height=$dish_depth){
text(text=text, font=$font, size=font_size, halign="center", valign="center");
}
}
}
module legends(depth=0) {
if (len($front_legends) > 0) {
front_of_key() {
for (i=[0:len($front_legends)-1]) {
rotate([90,0,0]) keytext($front_legends[i][0], $front_legends[i][1], $front_legends[i][2], depth);
}
}
}
if (len($legends) > 0) {
top_of_key() {
for (i=[0:len($legends)-1]) {
keytext($legends[i][0], $legends[i][1], $legends[i][2], depth);
}
}
}
}

19
src/hulls.scad Normal file
View File

@ -0,0 +1,19 @@
include <hulls/skin.scad>
include <hulls/linear_extrude.scad>
include <hulls/hull.scad>
// basic key shape, no dish, no inside
// which is only used for dishing to cut the dish off correctly
// $height_difference used for keytop thickness
// extra_slices is a hack to make inverted dishes still work
module shape_hull(thickness_difference, depth_difference, extra_slices = 0){
render() {
if ($skin_extrude_shape) {
skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else if ($linear_extrude_shape) {
linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else {
hull_shape_hull(thickness_difference, depth_difference, extra_slices);
}
}
}

33
src/hulls/hull.scad Normal file
View File

@ -0,0 +1,33 @@
module hull_shape_hull(thickness_difference, depth_difference, extra_slices = 0) {
for (index = [0:$height_slices - 1 + extra_slices]) {
hull() {
shape_slice(index / $height_slices, thickness_difference, depth_difference);
shape_slice((index + 1) / $height_slices, thickness_difference, depth_difference);
}
}
}
module shape_slice(progress, thickness_difference, depth_difference) {
skew_this_slice = $top_skew * progress;
x_skew_this_slice = $top_skew_x * progress;
depth_this_slice = ($total_depth - depth_difference) * progress;
tilt_this_slice = -$top_tilt / $key_height * progress;
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0;
translate([x_skew_this_slice, skew_this_slice, depth_this_slice]) {
rotate([tilt_this_slice,y_tilt_this_slice,0]){
linear_extrude(height = SMALLEST_POSSIBLE + $minkowski_radius, scale = 0.1){
key_shape(
[
total_key_width(thickness_difference),
total_key_height(thickness_difference)
],
[$width_difference, $height_difference],
progress
);
}
}
}
}

View File

@ -0,0 +1,18 @@
// corollary is hull_shape_hull
// extra_slices unused, only to match argument signatures
module linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0){
height = $total_depth - depth_difference;
width_scale = top_total_key_width() / total_key_width();
height_scale = top_total_key_height() / total_key_height();
translate([0,$linear_extrude_height_adjustment,0]){
linear_extrude(height = height, scale = [width_scale, height_scale]) {
translate([0,-$linear_extrude_height_adjustment,0]){
key_shape(
[total_key_width(thickness_difference), total_key_height(thickness_difference)],
[$width_difference, $height_difference]
);
}
}
}
}

34
src/hulls/skin.scad Normal file
View File

@ -0,0 +1,34 @@
// use skin() instead of successive hulls. much more correct, and looks faster
// too, in most cases. successive hull relies on overlapping faces which are
// not good. But, skin works on vertex sets instead of shapes, which makes it
// a lot more difficult to use
module skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0 ) {
skin([
for (index = [0:$height_slices + extra_slices])
let(
progress = (index / $height_slices),
skew_this_slice = $top_skew * progress,
x_skew_this_slice = $top_skew_x * progress,
depth_this_slice = ($total_depth - depth_difference) * progress,
tilt_this_slice = -$top_tilt / $key_height * progress,
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0
)
skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice)
]);
}
function skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice) =
transform(
translation([x_skew_this_slice,skew_this_slice,depth_this_slice]),
transform(
rotation([tilt_this_slice,y_tilt_this_slice,0]),
skin_key_shape([
total_key_width(0),
total_key_height(0),
],
[$width_difference, $height_difference],
progress,
thickness_difference
)
)
);

View File

@ -5,7 +5,7 @@ include <stems.scad>
include <stem_supports.scad>
include <dishes.scad>
include <supports.scad>
include <key_features.scad>
include <features.scad>
include <libraries/geodesic_sphere.scad>
@ -271,16 +271,6 @@ module top_of_key(){
}
}
module keytext(text, position, font_size, depth) {
woffset = (top_total_key_width()/3.5) * position[0];
hoffset = (top_total_key_height()/3.5) * -position[1];
translate([woffset, hoffset, -depth]){
color($tertiary_color) linear_extrude(height=$dish_depth){
text(text=text, font=$font, size=font_size, halign="center", valign="center");
}
}
}
module keystem_positions(positions) {
for (connector_pos = positions) {
translate(connector_pos) {
@ -306,49 +296,16 @@ module stems_for(positions, stem_type) {
}
}
// a fake cherry keyswitch, abstracted out to maybe replace with a better one later
module cherry_keyswitch() {
union() {
hull() {
cube([15.6, 15.6, 0.01], center=true);
translate([0,1,5 - 0.01]) cube([10.5,9.5, 0.01], center=true);
}
hull() {
cube([15.6, 15.6, 0.01], center=true);
translate([0,0,-5.5]) cube([13.5,13.5,0.01], center=true);
}
}
}
//approximate (fully depressed) cherry key to check clearances
module clearance_check() {
if($stem_type == "cherry" || $stem_type == "cherry_rounded"){
color($warning_color){
translate([0,0,3.6 + $stem_inset - 5]) {
cherry_keyswitch();
}
}
}
}
module legends(depth=0) {
if (len($front_legends) > 0) {
front_placement() {
if (len($front_legends) > 0) {
for (i=[0:len($front_legends)-1]) {
rotate([90,0,0]) keytext($front_legends[i][0], $front_legends[i][1], $front_legends[i][2], depth);
}
}
}
}
if (len($legends) > 0) {
top_of_key() {
// outset legend
if (len($legends) > 0) {
for (i=[0:len($legends)-1]) {
keytext($legends[i][0], $legends[i][1], $legends[i][2], depth);
}
}
}
}
}

View File

@ -1 +0,0 @@
include <features/key_bump.scad>

View File

@ -0,0 +1,76 @@
include <../functions.scad>
module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
function p(x, y) = [ x, y, surface_function(x, y) ];
function p0(x, y) = [ x, y, bottom ];
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
function fan(a, i) =
a == 0 ? [ [ 0, 0, bottom ], [ i, -size, bottom ], [ i + step, -size, bottom ] ]
: a == 1 ? [ [ 0, 0, bottom ], [ i + step, size, bottom ], [ i, size, bottom ] ]
: a == 2 ? [ [ 0, 0, bottom ], [ -size, i + step, bottom ], [ -size, i, bottom ] ]
: [ [ 0, 0, bottom ], [ size, i, bottom ], [ size, i + step, bottom ] ];
function sidex(x, y) = [ p0(x, y), p(x, y), p(x + step, y), p0(x + step, y) ];
function sidey(x, y) = [ p0(x, y), p(x, y), p(x, y + step), p0(x, y + step) ];
points = flatten(concat(
// top surface
[ for (x = [ -size : step : size - step ], y = [ -size : step : size - step ]) face(x, y) ],
// bottom surface as triangle fan
[ for (a = [ 0 : 3 ], i = [ -size : step : size - step ]) fan(a, i) ],
// sides
[ for (x = [ -size : step : size - step ], y = [ -size, size ]) rev(y < 0, sidex(x, y)) ],
[ for (y = [ -size : step : size - step ], x = [ -size, size ]) rev(x > 0, sidey(x, y)) ]
));
tcount = 2 * pow(2 * size / step, 2) + 8 * size / step;
scount = 8 * size / step;
tfaces = [ for (a = [ 0 : 3 : 3 * (tcount - 1) ] ) [ a, a + 1, a + 2 ] ];
sfaces = [ for (a = [ 3 * tcount : 4 : 3 * tcount + 4 * scount ] ) [ a, a + 1, a + 2, a + 3 ] ];
faces = concat(tfaces, sfaces);
polyhedron(points, faces, convexity = 8);
}
module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
function to_polar(q) = q * (90 / size);
function p(x, y) = [
surface_distribution_function(to_polar(x)),
surface_distribution_function(to_polar(y)),
surface_function(surface_distribution_function(to_polar(x)), surface_distribution_function(to_polar(y)))
];
function p0(x, y) = [ x, y, bottom ];
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
function fan(a, i) =
a == 0 ? [ [ 0, 0, bottom ], [ i, -size, bottom ], [ i + step, -size, bottom ] ]
: a == 1 ? [ [ 0, 0, bottom ], [ i + step, size, bottom ], [ i, size, bottom ] ]
: a == 2 ? [ [ 0, 0, bottom ], [ -size, i + step, bottom ], [ -size, i, bottom ] ]
: [ [ 0, 0, bottom ], [ size, i, bottom ], [ size, i + step, bottom ] ];
function sidex(x, y) = [ p0(x, y), p(x, y), p(x + step, y), p0(x + step, y) ];
function sidey(x, y) = [ p0(x, y), p(x, y), p(x, y + step), p0(x, y + step) ];
points = flatten(concat(
// top surface
[ for (x = [ -size : step : size - step ], y = [ -size : step : size - step ]) face(x, y) ],
// bottom surface as triangle fan
[ for (a = [ 0 : 3 ], i = [ -size : step : size - step ]) fan(a, i) ],
// sides
[ for (x = [ -size : step : size - step ], y = [ -size, size ]) rev(y < 0, sidex(x, y)) ],
[ for (y = [ -size : step : size - step ], x = [ -size, size ]) rev(x > 0, sidey(x, y)) ]
));
tcount = 2 * pow(2 * size / step, 2) + 8 * size / step;
scount = 8 * size / step;
tfaces = [ for (a = [ 0 : 3 : 3 * (tcount - 1) ] ) [ a, a + 1, a + 2 ] ];
sfaces = [ for (a = [ 3 * tcount : 4 : 3 * tcount + 4 * scount ] ) [ a, a + 1, a + 2, a + 3 ] ];
faces = concat(tfaces, sfaces);
polyhedron(points, faces, convexity = 8);
}
function surface_distribution_function(dim) = sin(dim) * $3d_surface_size;
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));